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Уважаемые члены жюри! 

 

Задачи, предложенные школьникам для решения на олимпиаде, не стандартные и 

достаточно сложные. Предложенные здесь варианты путей 

решений не являются единственно возможными. Участники 

олимпиады могут предложить свои способы решения. Если 

эти способы приводят к правильным ответам и физически 

обоснованы, то задача (или ее отдельные пункты) должны 

оцениваться максимальными баллами.  

Каждое задание сопровождается Листами ответов, в 

которые участники олимпиады должны занести 

окончательные результаты.  

Если окончательный результат не занесен в Лист 

ответов, но содержится в основном решении, то этот 

результат также необходимо оценивать.  

Не забывайте, что Вы должны оценивать не только конечные ответы, но и 

отдельные правильные шаги в ходе решения!  

 

 

Уважаемые коллеги! Не жалейте баллов (если, конечно, есть за что!) для наших 

талантливых школьников! 
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Задание 11-1.  «Разминка» 
 

 

 

 

 

 

1.  «Посмотри и объясни» На Рис. 1 изображен популярный  

физический опыт.  Вырезанное из пластиковой бутылки кольцо 

поставили на широкое горлышко пустой бутылки. На вершину 

кольца положили небольшую монету (или гайку) (см. Рис. 1). 

Резким горизонтальным ударом линейки выбьем пластиковое 

кольцо из-под монеты первый раз – как в случае  а), а второй раз – 

как в случае б). Одинаковы ли будут результаты опыта в обоих 

случаях? Если нет, то что, по вашему мнению, произойдет с 

монетой далее в каждом из случаев? Проанализируйте Рис. 1, в 

Листе ответов кратко опишите ваши выводы и обоснуйте их с 

физической точки зрения.  

 

 

 

 

2. «Перемещение и путь и частицы» Частица (Рис. 2) движется  прямолинейно и 

равноускоренно (равнопеременно). Известно, что за некоторый 

промежуток времени  𝑡1  путь 𝑙, пройденный частицей, и 

модуль  её перемещения  𝑆 = |𝑆| отличаются в  𝜂1 = 3,00 раза. 

Известно также, что скорость частицы в момент времени  𝑡1 

меньше по модулю скорости в начальный момент времени (𝑡 = 0). Во сколько раз  𝜂2  

отличаются путь, пройденный частицей, и модуль её перемещения за промежуток времени  2𝑡1?  

 

 

 

3.  «Зеркальный шар» Световой луч 𝐴𝐵 (Рис. 3) от неподвижного лазера Л ориентирован 

«горизонтально». Зеркальный шар радиусом 𝑅 = 12 см движется 

перпендикулярно световому лучу 𝐴𝐵 («сверху вниз») со 

скоростью 𝜐 = 1,5 м/с. При движении зеркального шара 

отраженный луч поворачивается относительно «неподвижного» 

падающего луча. Чему равна угловая скорость  𝜔  вращения 

отраженного луча в момент, когда падающий световой луч  𝐴𝐵 

находится на расстоянии  ℎ = 6,4 см (см. Рис. 3) от диаметра  𝐶𝐷  

зеркального шара параллельно ему?  

 

 

 

 
 

 

Рис. 2 

𝜐 

Рис. 3 
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Возможные решения: 
 

Задание 11-1.  «Разминка» 
 

1. «Посмотри и объясни» На Рис. 1 (а),б)) изображены две 

модификации известного эффектного опыта по механике, 

демонстрирующего особенности деформаций тела при различных 

способах механического воздействия.  

 Точка приложения силы удара линейки существенно влияет на 

вид деформации: в случае а) это будет сжатие по горизонтали 

(выпуклость по вертикали), а в случае б) – растяжение по 

горизонтали  (сжатие по вертикали). 

Соответственно, монета в случае а) никак не попадет в 

бутылку, а полетит по параболе «вверх и вперед», тогда как в 

случае б) при аккуратном ударе она окажется в бутылке. 

Случай а) подробно рассмотрен в задании 9-1, а случай б) 

– в задании 10-1. 

  
 

2. «Путь и перемещение частицы» Поскольку при произвольном движении частицы её путь 

𝑙 всегда больше (либо равен) модуля  перемещения  𝑆 = |𝑆|, то из условия следует, что к моменту 

времени  𝑡1  путь частицы в три раза больше модуля её перемещения 

𝑙 = 3|𝑆| = 3𝑆0,                                                                         (1) 

где  𝑆0  –  модуль перемещения частицы к моменту времени  𝑡1. 

В условии задачи не сказано, как «направлено» ускорение  𝑎  движущейся частицы: «по» 

её начальной скорости  𝜐0  или «против».  

 Предположим, что «по», т.е. проекция ускорения на ось начальной скорости положительна 

(𝑎 > 0).  

 Тогда частица будет ускоряться и двигаться прямолинейно все время в одном направлении. 

Однако, в таком случае  модуль перемещения  𝑆  частицы всегда будет равен пути 𝑙, пройденному 

ею, т.е. их отношение будет равно единице 

𝑙 = 𝑆,                                                                        (2) 

что противоречит данным условия.  

 Следовательно, для выполнения (1) вектор ускорения 𝑎⃗ 

частицы должен быть направлен против вектора  𝜐⃗0  её 

начальной скорости. В таком случае траектория  𝐴𝐵𝐶𝐷 частицы 

будет иметь примерный вид как на Рис. 2.  

 Таким образом, на промежутке времени  𝑡1  частица сначала движется в одну сторону (𝐴𝐵𝐶), 

а после остановки – в обратную (𝐶𝐷). 

 Меньшая величина скорости в момент времени 𝑡1 означает, что частица не успевает 

вернуться в начальную точку  𝐴 (см. Рис. 2). 

 Из Рис. 2 следует, что  𝐴𝐷 = 𝑆0,  следовательно,  𝐵𝐶 + 𝐶𝐷 = 3𝑆0 − 𝐴𝐷 = 2𝑆0. Поскольку эти 

отрезки равны, то находим 

𝐵𝐶 = 𝐶𝐷 = 𝑆0,                                                            (3) 

𝜐⃗0 

Рис. 2 

𝑎⃗ 
𝐴 𝐵 

𝐶 
𝐷 𝑆0 𝑆0 

𝑆0 

𝐹⃗тр 

𝑁ሬሬ⃗  𝐹⃗ 
а) 

Рис. 1 

б) 
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где  𝑆0  есть её удаление частицы от начальной точки в  момент времени  𝑡1. 

  Обозначим время движения от начальной точки до точки остановки  𝐶 через 𝑡0, тогда по 

кинематическому закону равноускоренного (равнопеременного) движения имеем 

𝑎𝑡0
2

2
= 2𝑆0 ,                                                              (4) 

𝑎(𝑡1−𝑡0)2

2
= 𝑆0.                                                          (5) 

Решая систему (4) – (5), находим 

 𝑡1 = (1 +
1

√2
) 𝑡0 .                                                          (6) 

Поскольку с момента  𝑡0  и до момента времени 2𝑡1 частица движется в одном 

направлении, то за время  (2𝑡1 − 𝑡0) проходит путь  𝑙1, равный 

 𝑙1 =
𝑎(2𝑡1−𝑡0)2

2
= 2𝑆0(√2 + 1)2 = 2𝑆0(3 + 2√2) .                                      (7) 

Тогда полный путь частицы за  время  2𝑡1 равен  

𝑙2 = 2𝑆0 + 𝑙1 = 4𝑆0(2 + √2) ,                                                 (8) 

а модуль перемещения за это время равен  

 𝑆2 = 𝑙1 − 2𝑆0 = 4𝑆0(1 + √2) .                                                         (9) 

Таким образом, искомое отношение этих двух величин через промежуток времени  2𝑡1  равно    

𝜂2 =
𝑙2

𝑆2
=

4𝑆0(2+√2)

4𝑆0(1+√2)
= √2 = 1,41 .                                                (10) 

 

3. «Зеркальный шар» Согласно принципу относительности Галилея (Эйнштейна), все 

инерциальные системы отсчета (ИСО) тождественны в том 

смысле, что решать физическую задачу (даже по оптике!) 

можно в любой из них.  

 В данном случае  удобно перейти в инерциальную систему 

отсчета, связанную с движущимся шаром. В ней шар будет 

«покоится», а лазер (и луч 𝐴𝐵) – двигаться «снизу вверх» с 

постоянной скоростью  𝜐.    

 Рассмотрим световой луч, идущий на расстоянии ℎ от диаметра 𝐶𝐷 (Рис. 3).  

 За малый промежуток времени  ∆𝑡  луч удалится от диаметра на малое расстояние  ∆ℎ, равное 

∆ℎ = 𝜐∆𝑡 .                                                                      (1) 

 При этом точка падения пройдет по зеркальному шару малое расстояние  ∆𝑙  по дуге, которую 

приблизительно можно считать хордой. Тогда из соответствующего прямоугольного 

треугольника получим (на Рис. 3  не показан) 

∆𝑙 =
∆ℎ

cos 𝛼
=

𝜐∆𝑡

cos 𝛼
 ,                                                                 (2) 

где 𝛼 – угол падения светового луча на зеркальный шар. 

 Малое увеличение  ∆𝛼  угла падения светового луча составит 

∆𝛼 =
∆𝑙

𝑅
=

𝜐∆𝑡

𝑅cos 𝛼
 ,                                                                 (3) 

где 𝑅 – радиус шара. 

 При увеличении угла падения увеличивается и угол отражения, поэтому полный поворот ∆𝜑 

отраженного луча будет в два раза больше 

Рис. 3 
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∆𝜑 = 2∆𝛼 =
2𝜐∆𝑡

𝑅cos 𝛼
 .                                                                 (4) 

 Угловая скорость вращения отраженного луча в этот момент 

𝜔 =
∆𝜑

∆𝑡
=

2𝜐∆𝑡

𝑅cos 𝛼∆𝑡
=

2𝜐

𝑅cos 𝛼
 .                                                          (5) 

Учитывая, что  

cos 𝛼 =
√𝑅2−ℎ2

𝑅
 ,                                                                (6) 

получаем окончательный результат 

𝜔 =
2𝜐

𝑅

𝑅

√𝑅2−ℎ2
=

2𝜐

√𝑅2−ℎ2
 .                                                      (7) 

Расчет дает 

𝜔 =
2∙1,5

√0,122−0,0642
(

рад

с
) = {29,55414023} = 30 

рад

с
 .                                 (8) 

В соответствии с правилами округления (см. данные условия) окончательный ответ 

приводим с  точностью до двух значащих цифр. 

 Заметим, что при   ℎ = 0  формула (7) переходит в формулу (4) для задачи 10 класса, поскольку 

это есть частный случай данной задачи (при угле падения 𝛼 = 0) ☺.  

𝜔 =
2𝜐

𝑅
 . 
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Задание 11-2.  Звук и Гук 
 

Из простых опытов (Рис. 1) следует, что механические взаимодействия (и звук в том числе) 

передаются в упругой среде (пространстве) от точки 

к точке не мгновенно, а переносятся упругими 

волнами с конечной скоростью 𝑐 (𝑐 < ∞) за 

некоторый конечный промежуток времени.  

Интуитивно понятно, что скорость   

распространения упругих волн (звука) в данной 

среде  определяется такими её механическими 

характеристиками, как упругость  и инертность. 

В рамках данного задания вам предстоит более подробно разобрать процесс распространения 

упругих волн (звука) на достаточно простых моделях. 

Рассмотрим однородный упругий стержень (Рис. 2) начальной длиной 𝑙 и площадью 

поперечного сечения 𝑆, к свободному концу которого 

приложили силу  𝐹⃗. 

Под действием силы 𝐹⃗ стержень удлинится 

(деформируется)  на некоторую величину  𝑑𝑙 (𝑑𝑙 > 0), 

называемую абсолютной деформацией образца (см. Рис. 2).  

При деформации стержня в нем возникает обратная сила упругости 𝐹⃗у, которая стремится 

скомпенсировать действие внешней силы  𝐹⃗.  

Согласно закону Гука, проекция силы упругости  𝐹у,  возникшая в стержне, при малых 

деформациях  (𝑑𝑙 ≪ 𝑙)  есть 

𝐹у = −𝑘𝑑𝑙 = 𝐹,                                                                  (1) 

где  𝑘 – коэффициент упругости стержня. 

Коэффициент упругости  𝑘 стержня зависит как от его «геометрии», так и от упругих свойств 

его материала  

𝑘 = 𝐸
𝑆

𝑙
 ,                                                                       (2) 

где  𝐸 – модуль Юнга (упругости) материала, из которого изготовлен стержень. 

Модуль Юнга материала является табличным данным и измеряется в  [𝐸] = Па = Н/м2. 

Действия силы тяжести и сил трения и сопротивления в данной задаче не учитывать.  
 

 

Справочные данные и параметры рассматриваемой системы: молярная газовая постоянная 

𝑅 = 8,31 
Дж

моль∙𝐾
, молярная масса воздуха 𝑀 = 29 

г

моль
, скорость звука в воздухе при температуре  

𝑡° = 20℃  равна  𝑐 = 343 (
м

с
), уравнение адиабаты:  𝑝𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡, где 𝛾 =

𝑐𝑝
𝑀

𝑐𝑉
𝑀 , для двухатомного 

газа  (воздуха)  𝛾 = 1,4 ,  𝜉 – греческая буква «кси». 
 

 

Часть 1. Скорость звука в упругом стержне  
 

Пусть упругий стержень 𝐴𝐵 налетает по нормали со 

скоростью 𝜐 на очень жесткую (недеформируемую) 

неподвижную стенку (Рис. 3). Плотность материала 

стержня  𝜌, его модуль Юнга (упругости) равен  𝐸.  

Сразу после механического контакта со стенкой по 

стержню (от стенки) начинает бежать продольная волна 

сжатия (возмущения) со скоростью звука  𝑐  (см. Рис. 3).  

𝑆 

𝑙 𝑑𝑙 

𝐹⃗ 

Рис. 2 

 

𝑐 𝜐 𝐴 𝐵 𝐷 
𝜐 = 0 

Рис. 3 
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При этом к некоторому моменту времени деформированной оказывается лишь часть 𝐷𝐵 

стержня, до которой успела дойти волна упругого возмущения (см. Рис. 3). Будем считать, что 

частицы стержня в этой области  (𝐷𝐵) уже остановились  (𝜐 = 0) под действием сил упругости. 

Заметим, что в этот же момент времени другие частицы стержня (в его «дальней» части 𝐴𝐷) 

«как ни в чем не бывало» продолжают движение вперед (к стенке) с прежней скоростью  𝜐  (см. 

Рис. 3).               

1.1  Методом размерностей получите  формулу для скорости звука  𝑐 = 𝑐 (𝐸, 𝜌) в упругом стержне 

(с точностью до безразмерного коэффициента  𝜉), в зависимости его модуля упругости (Юнга)  𝐸 

и плотности 𝜌.  
 

1.2  Найдите скорость звука 𝑐 в упругом стержне, рассмотрев изменение импульса стержня в 

процессе его столкновения с недеформируемой стенкой. Установите значение безразмерного 

коэффициента  𝜉. 

1.3  Найдите силу давления  𝐹д  стержня на недеформируемую стенку в процессе удара (во время 

контакта стержня со стеной). 
 

 

Часть 2. Звук и Лаплас 
 

 

Скорость звука в газах впервые была рассчитана И. Ньютоном в его знаменитой работе 

«Математические начала натуральной философии» (1687 г.). 

Однако результат мастера оказался сильно заниженным, и 

более ста лет  причина данной «нестыковки» оставалась 

неясной… 

Лишь в 1816 г. известный французский математик  Пьер 

Симон де Лаплас исправил «неточность» Ньютона, который 

считал, что звук распространяется «изотермически». Лаплас 

построил адиабатную модель распространения звука и 

получил блестящее совпадение теории и практики! 

    Для построения модели Лапласа необходимо выяснить: какая величина играет роль модуля 

Юнга  𝐸 для газов? 

Рассмотрим идеальный газ под давлением  𝑝0 в неподвижной гладкой трубе 𝐴𝐵 длиной  𝑙  и 

площадью поперечного сечения  𝑆, запертый подвижным герметичным поршнем  𝐷  (Рис. 4, а)). 
 
 

2.1 Приложим к подвижному поршню силу 𝐹, сжимающую идеальный газ (Рис. 4, б)). Пусть 

под действием этой силы поршень сместился влево на малое  𝑑𝑙 (𝑑𝑙 ≪ 𝑙), а давление газа 

увеличилось до значения  (𝑝0 + 𝑑𝑝), причем 𝑑𝑝 ≪ 𝑝. Используя (1) и (2), выразите модуль Юнга  

𝐸  газа внутри трубы через величины (𝑑𝑝, 𝑑𝑉, 𝑉), где  𝑑𝑉 = 𝑆𝑑𝑙 есть изменение объема газа под 

действием силы, а 𝑉 = 𝑆𝑙 – начальный объем газа. 
 

2.2 Примем во внимание тот факт, что при рапространении волн (в том числе и звуковых) 

отсутсвует перенос вещества. Иными словами масса выделенного объема газа в процессе его 

деформации (сжатия или растяжения) остается постоянной (𝑚 = 𝜌𝑉 = 𝑐𝑜𝑛𝑠𝑡) при малых 

изменениях объема  𝑑𝑉  и плотности  𝑑𝜌  газа.  Используя ранее полученные результаты,  

докажите универсальную формулу для скорости звука в газах (и жидкостях) в виде  𝑐 = √
𝑑𝑝

𝑑𝜌
 , где  

𝑑𝑝 – изменение давления газа при его уплотнении (разрежении), а  𝑑𝜌 – соответствующее этому 

изменение плотности газа. 
 

𝑆 

𝑙 

∆𝑙 

𝐹⃗ 

 

Рис. 4 

𝑝0 

𝑝0 + 𝑑𝑝 

а) 

б) 

𝐷 

𝐴 𝐵 
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2.3 Согласно предположению Лапласа процесс распространения звука в газе следует считать 

адиабатическим (𝑝𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡, 𝛾 =
𝑐𝑝

𝑀

𝑐𝑉
𝑀). Получите формулу Лапласа для скорости звука   𝑐Л  в  

газах. 
 

2.4 По формуле Лапласа вычислите скорость звука  𝑐Л  в воздухе при температуре  𝑡° = 20℃. 
 

 

 

Возможные решения: 
 

Часть 1.  Скорость звука в упругом стержне    
 

1.1 Учитывая размерности модуля Юнга [𝐸] = Па =
Н

м2
=

кг

м∙с2
  и плотности 𝜌 =

кг

м3
 из них 

можно составить только одну «композицию», имеющую размерность скорости: 𝑐 = √
𝐸

𝜌
.  

Следовательно, с точностью до некоторого безразмерного коэффициента  𝜉  искомую формулу 

для скорости звука в стержне можно записать как 

  𝑐 = 𝜉√
𝐸

𝜌
.                                                                          (1) 

1.2 Рассмотрим столкновение стержня с воображаемой недеформируемой стеной. При этом за 

время 𝑑𝑡 остановилась часть стержня длиной 𝑙 = 𝑐𝑑𝑡 (куда добежал звук). Соответственно, за 

промежуток времени   𝑑𝑡  погашен импульс  𝑑𝑝 этого же участка стержня длиной  𝑙 = 𝑑∆𝑡 .  

Согласно второму закону Ньютона в импульсной форме 

                    𝑑𝑝 = 𝐹𝑑𝑡.                                                                 (2) 

Погашенный импульс можно выразить как 

𝑑𝑝 = 𝑑𝑚𝜐 = 𝜌𝑆𝑙𝜐 = 𝜌𝑆(𝑐𝑑𝑡)𝜐,                                                 (3) 

где 𝑆 – площадь поперечного сечения стержня, 𝜐 – скорость стержня. 

Согласно закону Гука 

𝐹 = 𝑘𝑑𝑙 = 𝐸
𝑆

𝑙
𝑑𝑙 = 𝐸

𝑆

𝑙
(𝜐𝑑𝑡).                                            (4) 

Подставляя (3) и (4) в (2), получаем 

                     𝜌𝑆(𝑐𝑑𝑡)𝜐 = 𝐸
𝑆

𝑙
(𝜐𝑑𝑡)𝑑𝑡 = 𝐸

𝑆

𝑐𝑑𝑡
(𝜐𝑑𝑡)𝑑𝑡.                                      (5) 

Из (5) получаем искомую формулу для скорости продольный упругих волн в упругом 

стержне 

                                        𝑐 = √
𝐸

𝜌
 .                                                                       (6) 

Сравнивая (6) и (1), находим значение неизвестного безразмерного коэффициента 

                                        𝜉 = 1 .                                                                       (7) 

Следовательно, нам повезло, и методом размерностей мы сразу определили точную 

формулу для скорости звука в упругом стержне. 

1.3  Сила давления стержня на стену в процессе удара (во время контакта) найдется из (2) как 

 𝐹д =
𝑑𝑝

𝑑𝑡
=

𝜌𝑆(𝑐𝑑𝑡)𝜐

𝑑𝑡
= 𝜌𝑆𝑐𝜐 = 𝜐𝑆√𝜌𝐸.                                           (8) 
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Часть 2. Звук и Лаплас 
 

2.1  Силу  𝐹 можно представить, с одной  стороны как силу упругости  (−𝑘𝑑𝑙), а с другой – как 

изменение силы давления газа  (𝑑𝑝𝑆) 

                    𝐹 = −𝑘𝑑𝑙 = 𝑑𝑝𝑆,                                                               (9) 

где  𝑘 = 𝐸
𝑆

𝑙
  – коэффициент упругости «газовой пружины».  

Из (9) получим 

𝐸
𝑆

𝑙
𝑑𝑙 = −𝑑𝑝𝑆     ⟹     𝐸 = −

𝑙

𝑑𝑙
𝑑𝑝 = −

𝑉

𝑑𝑉
𝑑𝑝 = −𝑉

𝑑𝑝

𝑑𝑉
 .                          (10) 

 

 

2.2  Подставляя (10) в (6), получаем для скорости звука в газе 

                                        𝑐 = √
𝐸

𝜌
= √

−𝑉
𝑑𝑝

𝑑𝑉

𝜌
= √−

𝑉

𝜌

𝑑𝑝

𝑑𝑉
 .                                                       (11) 

Поскольку при распространении  звука переноса вещества нет, то для некоторого 

выделенного объема сплошной среды должно выполняться равенство  

                    𝑚 = 𝜌𝑉 = (𝜌 + 𝑑𝜌)(𝑉 + 𝑑𝑉).                                                 (12) 

Из (12) найдем (пренебрегая бесконечно малыми более высокого порядка) 

𝑑𝜌𝑉 + 𝜌𝑑𝑉 = 0     ⟹      𝑉 = −𝜌
𝑑𝑉

𝑑𝜌
.                                           (13) 

Подставляя (13) в  (11), получаем  

                                        𝑐 = √−
𝑉

𝜌

𝑑𝑝

𝑑𝑉
= √−

1

𝜌

𝑑𝑝

𝑑𝑉
(−𝜌

𝑑𝑉

𝑑𝜌
) = √

𝑑𝑝

𝑑𝜌
 .                                        (14) 

 

2.3  Запишем уравнение адиабатного процесса уравнение адиабаты  𝑝𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡  (𝛾 =
𝑐𝑝

𝑀

𝑐𝑉
𝑀 ,

для двухатомных газов 𝛾 = 1,4). 

Уравнение адиабаты можно привести к виду 

𝛾𝑝𝑑𝑉 + 𝑉𝑑𝑝 = 0 .                                                            (15) 

Поскольку плотность тела  𝜌~
1

𝑉
, то  можем записать, что  

 𝑑𝜌~ −
𝑑𝑉

𝑉2
 .                                                                  (16) 

Соответственно, (15) можно переписать в виде 

𝛾𝑝𝑑𝜌 − 𝜌𝑑𝑝 = 0 .                                                            (17) 

Из (17) получим, что для адиабатического процесса  
𝑑𝑝

𝑑𝜌
= 𝛾

𝑝

𝜌
 .                                                                 (18) 

С учетом (18) из (14) получаем формулу Лапласа для скорости звука в воздухе, 

выведенную им в 1816 г. 

                                        𝑐 = √
𝑑𝑝

𝑑𝜌
= √𝛾

𝑝

𝜌
= √𝛾

𝑅𝑇

𝑀
 .                                                     (19) 

2.4   Из (19) для воздуха (𝑀 = 29 
г

моль
) при температуре 𝑡° = 20℃ получаем значение скорости 

звука 

𝑐 = √
1,4∙8,31∙293

29∙10−3
(

м

с
) = {342,8462006} = 343 (

м

с
) .                               (20) 
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Полученный результат находится в превосходном согласии с данными эксперимента  для 

воздуха (343 м/с) при температуре  𝑡° = 20℃. 

11-3. Заряженный шар  
 

В электродинамике часто рассматривается напряженность 𝐸ሬ⃗  

электростатического поля диэлектрического шара (Рис.1) радиуса 𝑅 в 

вакууме, равномерно заряженного по всему объему  𝑉 с постоянной объёмной 

плотностью заряда  𝜌 (𝜌 = const).        

Объемная плотность заряда представляет собой заряд единицы объема 

диэлектрика  𝜌 =
∆𝑞

∆𝑉
 ,  т.е. имеет размерность [𝜌] =

Кл

м3.  

Если заряды распределены по поверхности 𝑆 (например, проводника), то 

говорят о поверхностной плотности заряда  𝜎 =
∆𝑞

∆𝑆
, которая имеет размерность [𝜎] =

Кл

м2. 

Поверхностная плотность заряда  𝜎  представляет собой электрический заряд единицы площади 

рассматриваемой поверхности.  

В отличие от проводников, внутри которых поле равно нулю (𝐸ሬ⃗ = 0ሬ⃗ ), поле  

𝐸ሬ⃗   такого шара отлично от нуля внутри шара, например в точке 𝐴 (см. Рис. 1). 

В данной задаче вам предстоит описать поле заряженного шара и рассмотреть его некоторые 

приложения.   

Для описания электростатических полей удобно использовать 

телесный угол. Телесный угол (Ω) – часть пространства, 

ограниченная лучами, выходящими из некоторой точки 𝑂 (Рис. 2).  

Единицей измерения телесного угла является стерадиан 

(«стерео радиан»): [Ω] = стр. По аналогии с плоским углом, в 

качестве меры телесного угла берется безразмерное отношение площади вырезанного 

сферического сегмента к квадрату радиуса описанной окружности. Для малых телесных углов 

справедлива формула 

ΔΩ =
Δ𝑆⊥

𝑟2 =
Δ𝑆 cos 𝛼

𝑟2 .                                                                (2)    

Диполем называется система из двух электрических зарядов, одинаковых по величине, но 

разных по знаку (+𝑞; −𝑞). Заряды находятся на малом фиксированном 

расстоянии  𝑙  (плечо диполя, 𝑙 ≪ 𝑅) друг от друга (Рис. 3). 

Действиями силы тяжести и сил трения и сопротивления в данной задаче 

пренебречь.  

Справочные данные и параметры рассматриваемой системы: электрическая постоянная 

𝜖0 = 8,85 ∙ 10−12  Ф/м; объем шара 𝑉 =
4

3
𝜋𝑅3; 𝜋 = 3,14. 

 

 

 

Часть 1. Поле шара  
 

 

При вычислении напряженности  𝐸ሬ⃗  электростатического поля «сложных» заряженных 

систем достаточно часто используется принцип суперпозиции электрических полей более 

«простых» систем, поля которых хорошо известны. 
             

1.1 Рассмотрим тонкую сферу (Рис. 4) некоторого радиуса 𝑅, равномерно 

заряженную с поверхностной плотностью 𝜎 (𝜎 = const > 0). Докажите, что для 

такой сферы, равномерно заряженной по поверхности, напряженность  𝐸ሬ⃗  

электростатического поля внутри неё (𝑥 < 𝑅) равна нулю  (𝐸ሬ⃗ = 0ሬ⃗ ) в любой точке. 
 

Рис. 1 

𝐴 𝐸ሬ⃗  
𝜌 

Рис. 4 

𝐸ሬ⃗ = 0ሬ⃗  
𝜎 

Рис. 3 

𝑙 +𝑞 −𝑞 
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1.2  Рассмотрим диэлектрический шар (Рис. 5) некоторого радиуса 𝑅, равномерно заряженный с 

положительной объемной плотностью 𝜌 (𝜌 = const > 0). Найдите 

зависимость 𝐸(𝑥) проекции на ось  𝑂𝑥 напряжённости 

электростатического поля внутри  (𝑥 < 𝑅)  такого шара, равномерно 

заряженного по всему объему, как функцию расстояния  𝑥  от его 

центра  𝑂. Укажите максимальное значение  𝐸0  полученной 

зависимости на данном интервале. 
 

1.3 Найдите зависимость 𝐸(𝑥) проекции на ось  𝑂𝑥 напряжённости 

электростатического поля вне   такого шара (𝑥 > 𝑅), равномерно заряженного по всему объему, 

как функцию расстояния 𝑥 от его центра  𝑂. Укажите максимальное значение полученной 

зависимости на данном интервале и сравните его с  𝐸0. 
 

1.4 Для построения суммарного графика полученных зависимостей введем безразмерные 

величины: для напряженности  𝐸∗ = 𝐸(𝑥)/𝐸0 , для расстояния   𝑥∗ = 𝑥/𝑅. Заполните Таблицу 1 и 

на выданном  Бланке 1  постройте график зависимости 𝐸∗(𝑥∗). 
 

 

Часть 2. Пролет в шаре 
 

 

Рассмотрим далее неподвижный равномерно заряженный по объему диэлектрический шар, 

поле которого вы описали в пунктах 1.2 – 1.4. Предположим, что вдоль диаметра шара 

просверлен достаточно тонкий канал  𝐴𝐵 (Рис. 6), через который в 

направлении от  𝐴  к 𝐵 могут свободно пролетать небольшие заряженные 

объекты.   
 

2.1 Частицу массой  𝑚, с отрицательным зарядом  (−𝑞), удерживают в 

точке 𝐴 на оси 𝑂𝑥 на расстоянии  𝑅 от центра шара (см. Рис. 6). В 

некоторый момент времени  (𝑡 = 0) частицу отпускают, и под действием 

электростатического поля  𝐸ሬ⃗   шара она начинает двигаться. Через какой 

промежуток времени  𝑡1 частица окажется на противоположном конце диаметра в точке 𝐵? 
 

2.2 Какую максимальную скорость  𝜐1 разовьет частица при движении? В какой точке траектории 

она будет достигаться? 
 

2.3 С каким максимальным ускорением 𝑎1 будет двигаться частица при 

своём  движении? В каких точках траектории оно будет достигаться? 
 

2.4 Диполь, состоящий из двух шариков  массой  𝑚  каждый, удерживают 

в точке 𝐴 (Рис. 7) на оси 𝑂𝑥 на расстоянии  𝑅 от центра шара. Заряды 

шариков равны по модулю 𝑞. В некоторый момент времени (𝑡 = 0) диполь 

отпускают, и под действием электростатического поля  𝐸ሬ⃗   шара он начинает втягиваться в шар. 

Укажите знаки заряда каждого из шариков (ближнего к шару и дальнего). Через какой 

промежуток времени  𝑡2 диполь окажется на противоположном конце диаметра в точке  𝐵? 
 

2.5 Какую максимальную скорость   𝜐2  разовьет диполь при движении? В какой точке 

траектории она будет достигаться? 
 

2.6 Какое максимальное ускорение 𝑎2 разовьет диполь при движении? В какой точке траектории 

оно будет достигаться? 

 

Рис. 5 

𝑥 𝑥 

𝐴 
𝑂 

𝑦 

𝐸(𝑥) 

Рис. 6 

𝐵 𝐴 𝑂 

Рис. 7 

𝐵 𝐴 𝑂 
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Возможные решения: 
 

Часть 1.  Поле шара  
 

1.1 Рассмотрим произвольную точку 𝐴 внутри заряженной сферы, не совпадающую с её 

центром (Рис. 8). Построим малые вертикальные (т.е. равные) 

телесные углы  ∆Ω  с вершиной в точке 𝐴.  

Эти телесные углы вырежут на поверхности сферы 

площадки различных площадей ∆𝑆1 = ∆Ω ∙ 𝑟1
2  и  ∆𝑆2 = ∆Ω ∙ 𝑟2

2. 

Соответственно, электрические заряды этих площадок  будут  

𝜎∆𝑆1  и  𝜎∆𝑆2. 

Векторы напряженностей, создаваемые этими зарядами, 

взаимно противоположны и их отношение, согласно закону 

Кулона 

∆𝐸2

∆𝐸1
=

1

4𝜋𝜖0

𝜎∆𝑆2

𝑟2
2

1

4𝜋𝜖0

𝜎∆𝑆1

𝑟1
2

=

1

4𝜋𝜖0
∆Ω

1

4𝜋𝜖0
∆Ω

= 1.                                                   (1)   

Следовательно, согласно (1), сумма этих векторов равна нулю, поскольку они равны по 

модулю и противоположны по направлению 

Аналогичное свойство будет справедливо и для любой пары малых вертикальных 

телесных углов  ∆Ω, повернутых на некоторый плоский угол  𝛼 относительно прямой  𝑂𝐴 (Рис. 2).  

∆𝐸2

∆𝐸1
=

1

4𝜋𝜖0

𝜎∆𝑆2

𝑟2
2

1

4𝜋𝜖0

𝜎∆𝑆1

𝑟1
2

=

1

4𝜋𝜖0
 

∆Ω

cos 𝛼
1

4𝜋𝜖0
 

∆Ω

cos 𝛼

= 1.                                                   (2)   

Таким образом, разбивая всю поверхность сферы на подобные пары и суммируя по ним, 

получаем сумму большого количества «нулей». Это говорит о том, что в любой внутренней точке 

равномерно заряженной по поверхности сферы напряженность электростатического поля равна 

нулю.  

 Интересно, что (1) и (2) справедливы только для кулоновских полей (~
1

𝑟2), напряженность 

которых убывает обратно пропорционально квадрату расстояния до точечного заряда. Иными 

словами, если бы в знаменателе закона Кулона был куб расстояния (~
1

𝑟3), то данное свойство 

было бы уже несправедливо.  
 

1.2 Проведем внутри равномерно заряженного шара сферу радиуса 𝑥 (Рис. 9). 

Эта сфера делит заряженный шар на две области по отношению к точке 𝐴: 

внутреннюю (𝑟 < 𝑥) и внешнюю (𝑟 > 𝑥). 

Внешняя область шара представляет собой широкий сферический слой, 

который можно разбить на достаточно тонкие (бесконечно тонкие) равномерно 

заряженные сферы.  

Согласно предыдущему пункту задачи, эти сферы не создают электростатического поля 

«внутри себя», т.е. далее их можно исключить из рассмотрения при рассмотрении напряженности 

поля в точке  𝐴.  

Таким образом, приходим к выводу, что электростатическое поле в точке  𝐴 создается 

только внутренними зарядами, попавшими в заряженный шарик радиусом  𝑥.  

Рис. 9 

𝐴 
𝑥 



Третий этап республиканской олимпиады по учебному предмету «Физика»  

2025/2026 учебный год 
 

13 

Теоретический тур.  Вариант 1.   

11 класс. Решения задач. Бланк для жюри. 
 

Согласно закону Кулона получим 

𝐸(𝑥) =
1

4𝜋𝜖0

𝑞(𝑥)

𝑥2 =
1

4𝜋𝜖0

𝜌𝑉

𝑥2 =
1

4𝜋𝜖0

𝜌
4

3
𝜋𝑥3

𝑥2 =
𝜌

3𝜖0
𝑥.                                        (3) 

Как следует из (3), напряженность электростатического поля внутри шара возрастает 

прямо пропорционально расстоянию  𝑥  от его центра. Следовательно, максимальное значение 

напряженности поля внутри шара будет достигаться на его поверхности (при  𝑥 = 𝑅) 

𝐸0 = 𝐸(𝑅) =
𝜌𝑅

3𝜖0
.                                                            (4) 

 

1.3 Электростатическое поле вне шара совпадает с полем точечного заряда, находящимся в 

центре шара. Следовательно, в данном случае 

𝐸(𝑥) =
1

4𝜋𝜖0

𝑞

𝑥2 =
1

4𝜋𝜖0

𝜌𝑉

𝑥2 =
1

4𝜋𝜖0

𝜌
4

3
𝜋𝑅3

𝑥2 =
𝜌𝑅3

3𝜖0

1

𝑥2 = 𝐸0
𝑅2

𝑥2.                              (5) 

Как следует из (5), максимальное значение  𝐸(𝑥) вне шара также достигается при  𝑥 = 𝑅, 

т.е. опять же на его поверхности 

𝐸𝑚𝑎𝑥 = 𝐸(𝑅) = 𝐸0
𝑅2

𝑥2
= 𝐸0 .                                                 (6) 

Как видим, (4) и (6) совпадают, а это значит, что в точке  𝑥 = 𝑅  функция зависимости  

𝐸(𝑥)  (и ее график!) не будет испытывать разрыва, т.е. будет непрерывной. График любой 

непрерывной  функции можно нарисовать «одним движением», не отрывая карандаша от бумаги. 

Например, с параболой это получится, а вот с гиперболой – уже нет. ☺ 

Заметим, что силовые линии поля шара вне шара никак не отличаются от силовых линий 

такого же точечного заряда, находящегося в его центре. 
 

1.4 При построении графика функции 

удобно использовать безразмерные 

координаты, поскольку они значительно 

упрощают расчеты и при этом «сохраняют» 

характер и особенности исследуемой функции. 

В нашем случае безразмерное 

расстояние (приведенная длина) 𝑥∗ = 𝑥/𝑅  

изменяется в интервале  0 ≤ 𝑥∗ ≤ 3. 

Приведенная напряженность  𝐸∗ поля 

шара для интервала внутри него (0 ≤ 𝑥∗ ≤ 1) 

соответствует графику прямой пропорциональности  

𝐸∗(𝑥∗) =
𝐸(𝑥)

𝐸0
=

𝜌

3𝜖0
𝑥

𝜌𝑅

3𝜖0

=
𝑥

𝑅
= 𝑥∗.                                                   (7) 

Вне шара (1 ≤ 𝑥∗ ≤ 3) получаем обратно-квадратичную зависимость, соответствующую 

закону Кулона 

𝐸∗(𝑥∗) =
𝐸(𝑥)

𝐸0
=

𝐸0
𝑅2

𝑥2

𝐸0
=

1

𝑥2

𝑅2

=
1

(𝑥∗)2
.                                                 (8) 

 

Вычисляем на инженерном калькуляторе и заполняем Таблицу 1. 

Таблица 1. Расчет зависимости  𝐸∗(𝑥∗) 

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

𝐸∗

𝑥∗

Рис. 10
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𝑥∗ 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

𝐸∗ 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

𝑥∗ 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 

𝐸∗ 1 0,826 0,694 0,592 0,510 0,444 0,391 0,346 0,309 0,277 

𝑥∗ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 

𝐸∗ 0,250 0,227 0,207 0,189 0,174 0,160 0,148 0,137 0,128 0,119 0,111 

 

График итоговой зависимости предоставлен на Рис. 10. 

 

Часть 2. Пролет в шаре 
 

2.1  Рассмотрим движение заряженной частицы в канале (Рис. 11). 

Поскольку ее заряд отрицательный, а заряд шара положительный (по 

условию), то поле шара будет втягивать частицу в канал.  

Пусть частица находится на расстоянии  𝑥 от центра шара (см. 

Рис. 11), тогда второй закон Ньютона примет вид 

𝑚𝑎 = −𝑞𝐸(𝑥) = −
𝑞𝜌

3𝜀0
𝑥,                                                   (9) 

где 𝑎 – проекция ускорения частицы. 

Учитывая, что  ускорение 𝑎(𝑡) есть вторая производная от координаты по времени 𝑎(𝑡) =

𝑥̈(𝑡), перепишем (9)  в виде 

𝑚𝑥̈(𝑡) = −
𝑞𝜌

3𝜀0
𝑥(𝑡).                                                         (10) 

Далее получаем 

𝑥̈(𝑡) +
𝑞𝜌

3𝜀0𝑚
𝑥(𝑡) = 𝑥̈(𝑡) + 𝜔2𝑥(𝑡) = 0,                                           (11) 

где 𝜔 = √
𝑞𝜌

3𝑚𝜀0
 . 

Мы получили уравнение гармонических колебаний (11) с периодом 

𝑇 = 2𝜋√
3𝑚𝜀0

𝑞𝜌
.                                                                  (12) 

 Таким образом, согласно (12) отрицательно заряженная частица будет совершать 

гармонические колебания с периодом  𝑇 и с положением равновесия в центре шара.  

В точке 𝐵 на другом конце диаметра она окажется через промежуток времени, равный 

половине периода колебаний 

𝑡1 =
𝑇

2
= 𝜋√

3𝑚𝜀0

𝑞𝜌
.                                                                  (13) 

 

2.2 При гармонических колебаниях максимальная скорость осциллятора достигается при 

прохождении им положения равновесия.  Это означает, что его максимальная скорость частицы 

будет достигаться в центре шара (точке  𝑂). 

Поскольку колебания гармонические с амплитудой  𝐴=R, то максимальная скорость 

частицы при этом равна 

𝜐1 = ω𝑅 = 𝑅√
𝑞𝜌

3𝑚𝜀0
.                                                                (14) 

Рис. 11 

𝐵 𝐴 𝑂 

𝑥 

𝑞𝐸(𝑥) 
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2.3 Максимальное ускорение 𝑎1 заряженной частицы достигается в точках действия 

максимальной силы, т.е. в точках остановки при максимальном удалении от центра заряженного 

шара. Следовательно, 

𝑎1 =
𝐹𝑚𝑎𝑥

𝑚
=

𝑞𝜌𝑅

3𝜖0

𝑚
=

𝑞𝜌𝑅

3𝜖0𝑚
.                                                            (15) 

2.4   Как следует из (3), напряженность электрического поля внутри 

однородно заряженного шара 

𝐸(𝑥) =
𝜌

3𝜀0
𝑥.                                      (16) 

На диполь в электрическом поле действует 

равнодействующая двух кулоновских сил, приложенных к каждому 

из его зарядов в различных направлениях. 

Для втягивания диполя в шар (Рис. 12) дальний от центра его 

заряд должен быть отрицательным (там поле сильнее!). Соответственно, ближний заряд диполя – 

положительным.  

В таком случае  искомая равнодействующая двух сил Кулона будет равна (см. Рис. 12) 

𝐹(𝑥) = 𝑞(𝐸(𝑥 + 𝑙) − 𝐸(𝑥)) = 𝑞𝐸′(𝑥)𝑙 =
𝑞𝑙𝜌

3𝜀0
= const,                          (17) 

где  𝑞 – модуль заряда каждого из шариков. 

Таким образом, согласно (17) диполь будет разгоняться до центра шара с постоянным 

ускорением 𝑎  

 𝑎 =
𝐹(𝑥)

2𝑚
=

𝑞𝑙𝜌

6𝑚𝜀0
= const,                                                      (18) 

Особо следует обсудить пролет диполя через центр шара. В течение этого промежутка 

времени шарики диполя будут находиться по разные стороны от центра заряженного шара, 

поэтому возникает вопрос о справедливости  выражения для силы (17). 

Покажите самостоятельно, что в данном случае сила (17) также будет оставаться 

постоянной, поскольку даже при таком расположении шариков, при зависимости  (16)  поля  от 

координаты сумма проекций сил не меняется. Таким образом, диполь пересечет центр шара также 

равноускоренно с ускорением (18). 

После пролета диполем центра шара проекция напряженности поля шара меняет свой знак, 

так как поле всегда направлено от центра. Однако и шарики диполя теперь «меняются» ролями – 

дальним становится положительный шарик! 

Это обстоятельство (минус на минус дает плюс!) сохраняет направление результирующей 

силы, действующей на диполь, т.е. «после центра шара» он продолжает ускоряться в том же 

направлении с прежним ускорением.   

Следовательно, можно рассмотреть прохождение всего диаметра 𝑑 шара как «одно целое» 

равноускоренное движение   

𝑑 = 2𝑅 =
𝑎𝑡2

2

2
=

𝑞𝑙𝜌𝑡2
2

12𝑚𝜀0
.                                                          (19) 

Из (20) находим время пролёта диполем диаметра шара 

𝑡2 = √
24𝑚𝜀0𝑅

𝑞𝑙𝜌
= 2√

6𝑚𝜀0𝑅

𝑞𝑙𝜌
.                                                    (20) 

Рис. 12 

𝐵 𝐴 𝑂 

𝑥 

−𝑞𝐸′(𝑥) 
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2.5   Поскольку движение диполя равноускоренное, то его максимальная скорость 𝜐2 достигается 

в конце движения, т.е. в точке  𝐵. Следовательно,  

𝜐2 = 𝑎𝑡2 =
𝑞𝑙𝜌

6𝑚𝜀0
∙ 2√

6𝑚𝜀0𝑅

𝑞𝑙𝜌
= 2√

𝑞𝑙𝜌𝑅

6𝑚𝜀0
.                                           (21) 

2.6  При равноускоренном движении ускорение диполя во всех точках одинаково. Следовательно, 

его ускорение максимальное «во всех точках» и равно начальному ускорению 

𝑎2 = 𝑎 =
𝑞𝑙𝜌

6𝑚𝜀0
.                                                                 (22) 

 

 

Контактный телефон для вопросов и консультаций в день проведения олимпиады: 

+375 29 766 12 87. 

 

 


